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Abstract. Theprocedureof * quantizationintroducesthenotionsof mathematical
equivalenceand of * spectrum. We prove that mathematicalequivalence,as a
changeof orderingfor quantumoperatorsto which it is related,doesnotpreserve
* spectrumunless it reducesto an automorphismof the * product. Suggestions
about the correct.~choiceof * productsaremade.

0. INTRODUCTION

The notion of mathematicalequivalencefor * products~2] is theusualnotion

of equivalencefor deformationsof algebrasas definedoriginally by M. Gersten-

haber [5]. In the particular contextof the Moyal * producton ~2n equivalence

has been related to the Weyl correspondence.More precisely, it was observed
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(see e.g. [8]) that the introduction of a weight factor in the definition of the

Weyl correspondence(which in somecasescorrespondsto a changeof ordering

of the quantum operators)inducesa changein the * product: this changeis a

mathematicalequivalence.
In the last years,many explicit examplesof * productshavebeenbuilt on

curved phase spaces and for some of theseexamplesa Weyl correspondence
has beenexhibited [2, 4, 61. In particularon the phasespacewhich is associated

to the bound statesof the hydrogenatom two different * productswereexplici-
tly constructed[3]. It turns out that these* productsare mathematicallyequiva-
lent; neverthelessthey lead to different spectrain the following sense.If Tis the
mathematicalequivalence[2] betweentwo * products* and *‘ (i.e. T(u * =

= Tu *‘ Tv, for all functions u, v on M), then the * spectrum[2] of anobservable

H (i.e. the support of the Fourier transfon~of exp * ~ H) is the sameas the

*‘ spectrumof TH; but the * spectrumof H will in generalbe different from

the *‘ spectrumof the sameH.

This phenomenonseemsinterestingfor two reasons.The first is that maybe

the choice of a <<good>> * product as the choice of quantizationmade by

physics— can be related to geometry.The second,which is not unrelated,is to
try and decide whentwo different * productson a manifold give the samespec-
trum for sufficiently manyobservables.

Our aim in this paperis to bring somelight on the secondof the abovemen-

tionned questions.Though the definition of the * spectrum [2] given aboveis

perfectly satisfactory,the spectral theory for * product algebrasof observables

is not yet as developedas the correspondingoperatorialtheory;moreoverthe *

analogueof projectivegeometryon a Hilbert space,which we shall use in the
following, has not yet received an autonomoustreatment.These are theories

worth being studied, with potential interesting geometrical implications; for
the present,we shall assumethe existenceof a \Veyl transform and translate
the questionin termsof operators.

In § 1 we recall the relevantdefinitionsand we translatein operatorlanguage

the isospectralproblem for * products.In §2 we solve the operator problem

for a particularclassof operators.In §3 we show how to deducefrom the ope-
rator solution the fact that two isospectral,equivalent * productsare equal. In

§4 we indicatesomefurther possibledevelopments.

I. Let (M, F) be a paracompact,connectedsymplecticmanifold of classC’~and

let N = C~(M,IR). Denote by E(N, v) the space of formal power seriesin a

parameterv(E C) with coefficientsin N.
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DEFINITION 1. [2] A * product on (M, F) is a bilinearmap

NxN-*E(N;p):(u,v)_*u*v=~vrC~(u,v)

suchthat

(i) C
0(u,v)=u~v

(ii) C1(u, v) ={ u, v} = Poisson bracketof u and v associatedto the symplec-
tric structureF.

(iii) C~(u,v) = (— l)
TC~(v,u)

(iv) Cr(U~a) = 0, Va E IR
(v) (u * v) * w = u * (v * w) (one extendsthe map N x N—~E(N; v) to a

map E(N; v) x E(N; ~) -÷E(N; v)).

DEFINITION 2. A Weyl correspondenceW is a one-parameterfamily of linear

mapsW~(k E IR) definedon a commonalgebraN’ of observablesonto a space
of not necessarilyboundedoperatorsin a separableHilbert space 1C. A Weyl

correspondenceW is said to be associatedto a * product on M for a certain
algebraof observablesN, if

(i) j~cN’

(ii) foranyf,gE~,andanykER:

~ a W~(g)= Wt”~(f~’g)

where a denotesthe compositionof operators,whereW(k) is extendedto complex
valuedfunctionsby linearity andwhere:

f,~’g=(f*g)~
1~ (kElR)

~ will generally be a subalgebraof N, possibly augmentedby distributions on

M (suchas ~) with the conventionthat distributionsare * composedwith regular
enoughfunctions.

Example. When M = JR
2~the usual Weyl correspondenceis associatedto the

Moyal * product; for physical applicationsk = h/2. Notice also that the image
of realvaluedfunctionsarehermitianoperators.

Assumethat two * products,denoted*1 and *2~are definedonM andassume
that to eachof them is associateda Weyl transform: W

1 to *1 for the algebra

N1, W2to *2 for the algebraN2, then for i = 1, 2:

W~(u*. v) = W1(u) a W.(v) Vu, v EN1.

Assume that W~is defined as a map on the range of W1 and assumethat
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W~W1(~~)CN2. Then

W~’W1(u *1 v) = W~’(W1(u)a W1(v))

= W~(W2(W~W1(u))a W2(W~W1(v))

(i) = W~W1(u)*2W~W1(v).

DEFINITION 3. [2] Two products *1 and *2 are said to be mathematicallyequi-
valent when thereexistsa linear map T = Id + ~ VT,, from N -÷E(N; ~) such

that:

T(u *1 v) = Tu *2 Tv.

Remark. When the <<cochainsx’ C~defining the * productsare bidifferential
operators,the mapsT,. arenecessarilydifferentialoperators[7]. Thiscanbe easily

seenby the following sequenceof arguments(for therelevantdefinitionssee[2])

(a) If the Hochshild coboundaryof a 1 -cochain is a differentiable2-cochain,
then the 1 -cochain is local, hencelocally differentiableby Peetre’stheorem;an
induction argumentshowsthat in eachpoint theorderof thecochain is bounded
by the order of the 2-cochain which is its coboundaiy;hencethe 1 -cochain is

differentiable.
(b) An induction procedureon the equivalenceseries,usingresult (a) and the

observationthat

T=(I+X7j+...+X~7~)+...=

=(I+X~+ :..+X~T1)(I+X~T)+O(X~
1)

givesthe result.

It what follows we shall restrict ourselvesto mathematicallyequivalent *

products. It is common knowledgethat on manifolds whose secondde Rham

cohomology group doesnot vanish thereexist non equivalent * products.An
exampleof sucha situationis given on the 2n dimensionaltorus T2~= JR2nh/7211.

A starproduct(*~)is inducedfrom Moyal on ~2n; anotherone (*2) is givenby

an odd polynomial changeof parametersuchas v -+ v + v~in the expressionof
One checksby direct computationthat thesetwo * productsare inequivalent

becausethe symplectic2-form on T2’~is not exact.
Relation (i) shows that two * productswith associatedWeyl transformsW

1

and W2, such that W~’° W1 is well defined in the sensegiven aboveare equiva-
lent; the exampleof T

2’~provesthat it is not alwaysthe case;henceWeyI trans-
formsshouldbe handledwith care.
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Let *1 and *2 be two equivalent * productson (M,F); let T be a map
N—* E(N; v) giving the equivalence.Let W

1 be a Weyl correspondenceassociated
to *1 for N1 and let A be a linearmap definedon a spaceof selfadjointoperators

on ~Csuchthat:

W1T(u)=AW1(u) u EN1.

The problemis to find conditionson *1 and *2 such that any functionu has the
same* spectrumfor *1 and*2~Thespectrumof u asdefinedin [2] doescoincide

with the spectrumof the operatorW(u)when it is selfadjoint and W is bijective.
Finding conditionson *1 and *2 is clearly equivalentto finding conditionson

T such that u and T~ugive the samespectrumfor *1, for any u EN~In view

of our assumptionsthis is equivalentto finding conditionson the linear map A,
suchthat W1(u)andAW1(u)havethe samespectrum.

2. We characterizein propositions 1 and 2 below any map A of the set E of

selfadjointoperatorsin a separableHilbert space~C,into E, suchthat
(i) A is linearthe sensethat

if Q,R,Q+REE, then A(Q+R)=AQ+AR

if QEE,XER, then A(XQ)=X(AQ)

(ii) A preservesthe spectrumof every elementof E, including the point

spectrumwith its multiplicities.
Sucha mapA will be calledisospectral.

Remark. The norm of a boundedselfadjoint operator being its spectral radius,

an isospectralmap is automaticallynorm preserving.

Let us recall that an operatorP in JC is a projectionoperator— or projector—

if and only if PE E and its spectrumconsistsof 0 and 1 only; furthermoreits

range is a finite dimensionalvectorspaceof dimensionf if andonly if the eigen-
value 1 hasmultiplicity f.

If P andP are projection operatorsthen P + P = F” is a projection operator
if and only if the ranges F andF’ of P and P’ are orthogonal;the range F” of
P” is thengiven by F” = F n F’.

From theseremarksone deducesthat an isospectralmap A stabilizesthe set

of all projection operators;it also stabilizesthe set of all projectionoperatorsof
any given finite rankor of any given finite corank.

If P andP’ are projectorsin 1C whoserangeF andF’ are orthogonalsubspaces
of ~C,their imagesAP and AP’ are projectorson orthogonalsubspacesof ~C:

indeedA (P + P’) = AP + AP’is a projector.
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If the range F of a projectorP is included in the rangeF’ of a projectorF’,

then the rangePof the projectorAP is included in the rangeF’ of the projector
AP’; indeed there exists a closed subspaceF = F’ fl F’ such that F ~ F = F’

andF’ = P + P, whereP is the orthogonalprojectionon P.

Let II :C\{0}-~C\{0}/~ =PJC be the canonical projection on projective
spaceand let p~ be the set of projectorsin ~JCof rank 1. If 0 * x E ~C,let

be the orthogonal projection on the 1-dimensional subspacegeneratedby x;
more generally if M is a subset of ~C,~M will denotethe orthogonalprojection

on the closed linear subspacesgeneratedby M and denoted>M <. The map

~:Pt’~—*P~C:1~-*fl(x)

is well definedand clearly bijective; henceA induces a map A :P~JC-÷P~C.We

shall prove that the map A lifts to a mapA : -* ~C,which turns out to be
eitherunitary or the compositionof a unitary map and a conjugation.

LEMMA 1. a) If L
1 and L2 are two orthogonal points of P~C(i.e. correspond

to two orthogonal 1-dimensional subspacesin ~C,also denotedL1, L2) their
imagesAL1 andAL2are two orthogonalpointsofP~1C.

b) If L1 and L2 are two orthogonal points of P~1Cand L is a point which

belongsto the line determinedby L1 andL2 then AL is a point which belongsto

theline determinedby AL1 andAL2.
c) A is infectiveandmapslines into lines.

Proof Part (a) follows from the aboveremarksaswell as part (b);indeedI~+1~

is a projectorP~(M= L1 D L2);thusL CM andAL CAL1 DAL2.
Injectivity follows from the fact that if L1 * L2 belongtoPW, then.P,~, + P~is

a selfadjoint operatorof rank 2; henceA ~ + = ~ + PA.L is also of rank
2; thusAL1 andAL2 are linearly independent1-dimensionalsubspaces.

For part (c) observethat any line in P~Ccontainsa pair of orthogonalpoints

and apply (b).

To construct : -+ ~f which is a lift of A (i.e. AP~= PAII(X) = for any
x E W \ {0}), we shall essentially forllow Artin’s proofof the fundamentaltheo-
rem of projectivegeometry[I].

Let e1 I E IN} be an orthonormal basis of ~C. Define e~by 2 conditions:

AP = P , (e, e17= 1. These2 conditionsdefinee up to a phaseandwe choose
any of the allowede’s. Forany!> 1 definee1’ to bethe uniquevectorsuchthat:

APe =

AI~e+e) 1~+e~
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This is possiblein virtue of Lemma 1. The selfadjointoperators

musthave the samespectrum.The non zero eigenvaluesmustrespectivelysatisfy:

=0
2

(e, e)
/ 1 =0

1 + (e
1’, e1’)

and thus(e1~,ei’) = 1. Define then,for any i E IN, Ae1 = es’.
For anyk EC,definek1 (I> 1)by:

AP~+ke1 = ‘~j+k.ei

Clearly the mapk -÷Ic1 is injective and the imageof 0 is 0 and that oneof 1 is 1.
Now if! * ~andk * 0:

>e1—e5< = >k(e1 —e5)< C>e1,e2<

and also

> k(e~— e2)< C > e1 + ke1,e1 + ke1 <.

Denotingagainby fl : ~JC\{0}-+P~Cwe have:

Afl(e1— e1) C A (H > e1 + ke1, e1 + ke1<) n A(H >e1,e1 <)

C fl > e + k1e1’, e + k2e~< fl H> ~ e~<

= H>k1e1’—k~e~<

= H > ~ — e < (taking the aboveidentity for k = 1)

Hencewe have k. = k2 = Ic’. The map C -+ C : k -~ k’ is thus definedindepen-
def

dently off, andA(e1 + ke1) = e + k ‘ei’.
We now extendthe map A definedon the basisof ~C,to finite linearcombina-

tions of elementsof the basis by induction. Observefirst that if L is a point of
PIC which belongs to the r — 1-spaceL1 +. . . + Lr~then AL is a point which
belongs to the r — I-spaceAL1 + . . . + ALr This is true for r = 1, 2. assumeit
is true for any r’ <r. Then L belongs to a line P + L,, where P belongs to

+. . . + L,,_ ~. Hence AL belongs to the line Ap + AL,, and Ar belongs to
AL1 +. . . + AL,,_1 by induction.
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Define Xe1 + k2e2+. . . + k,,e,)= e + ke + . . . + ke,,’; to check coheren-

ce (i.e. that AP~= ~
1~n(x)= for suchan x) oneobservesthat:

>ei+k
2e2+...+k,,er<C>ei+k2e2+...+k,,ie,,i,er<

> e~+ k2e2+ .. . + k,,e,,<C > e1 + k,,er e,,_1 <.

Hence:

a AH>e1+k2e2+ ... +krer<Cll(>e;+k’~e;+ ... +ke~,e<)

CiH(>e+k~e

= II >e + ke~+... + k 1e, 1+ ke,~<.

Similarly define A(k2e2+. . . + krer) = ke + . . . + k,,’e,,’; to check coheren-

ce oneobservesthat:

All>k2e2+...+J~er<Cfl>e,...,e<nll>ej+ke+...+ke,e<

= H >k~’e~+... + ke~<.

We now prove that the map~ : C -* C : k -* k’ associatedto this construction

is a field homomorphismwhichpreservesthe norm.
Indeedif k, 2 E C:

AH>e1+(k + Q)e2+e3< = ll>e+(k+2)’e~+e~<

C H> e + k’e~,2’e~+e~<.

Thus (k + 2)’ = k’ + 2’. Similarly

All > e~+ (kQ)e2+ ke3< = H > e + (k2)’e + k’e~<

C H >e~,Q’e+ e~<.

Thus (kQ)’ = k’Q’.
The 2 selfadjointoperatorsI~~~e1+ke2’’~1 “ej+k’ej havethe samespecturm:

the non zeroeigenvaluessatisfy respectively:

kk
_=o

1 + kk

k‘k’
=0.

1 + k’k’

Hence k = 1k’ land k’ = ke”~
1’~.On the otherhand
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1 +ke’~~2=1 +ke+ke’~’~+kk

= 1 + k + k + kk

and thuseitherk’ = k or Ic’ = k. To summarizelet us denoteby Ithe vectorspa-
ceof all finite linear combinationsof the elementsof a given basis~e

1i E IN} of

wehave

LEMMA 2. Thereexistsa mapA: J -* ~JCwith thefollowingproperties:
(i) If x = ~ Xe., either Ax =. ~ x.e~,or Xx = .~ X.e~where{e’,iEIN}

i~n i~n I~n 1 1

is an orthonormalsetof ~C.

(ii) IfxEJ, HoX(x)=AaH(x)

(iii) If x El, Ax 112 = II x 112
(iv) Ifx, y El, theneither(Ax, Xy) = (x, y), or (Ax, A’y) = Ky, x).

Observation. In the proofof lemma2 we haveassumedimplicitly thatdim ~C~ 3;
also we clearlydefineXX1e1to beeitherX1e~orX1e.

We now extendAto arbitraryelementsof ~Cby defining:

,~lXil2<oo

the choice being of course the sameas for the finite dimensionallinear combi-
nations.To prove coherenceof this definition, let us denotex = XN + uN, where

N

x = .~ x..Wethenhave:
N i1

lAP ~

~
(becauseA is linearand norm preserving)

IluNli IluNli
II x II x II
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which provesthe coherence.
The map A : ~1C-+ 1C is injective, linear or semilinear,preservesthe norm and

is an isometry onto the subspaceX~Cor an antiisometryonto this subspace.
Thisimplies in particularthat the rangeX~Cis a closedsubspace.If thissubspace

is strictly containedin JC there existsa vectorx * 0 which belongsto (A3C)’.

The operatorQ = ~ I~ is compactand doesnot admit 0 as eigenvalue;

the operatorAQ = asA is continuousin norm; it would then admit 0

as an eigenvaluewhich contradictsthe definition of A. HenceA is surjective.

PROPOSITION1. Let A be an isospectral map. There exists a bijective map

A: ~C-* ~Cwhich is either unitary or antiunitary, such that, for any projector P
in ~1C,tile range of which is the closedsubspace,F, the operatorAPis theortho-

gonalprojection on the subspaceA’F.

Proof We haveshown abovethe existenceof amap A : —* ~Cwhich is injective

and surjectiveand which is eitherlinear and isometric(i.e. unitary) or antilinear
andantiisometric(i.e. antiunitary),andsuchthat

AP~=P
2-~ Vx*0E~IC.

Let Fbeany closedsubspaceof If; let{e1 i = 1 . . . Nor ao}a completeorthonor-

mal set in F and let {g1f = 1 . . . M or oo} a completeorthonormalset in F’. We
haveshownin the beginning of §2 that APF is a projector,say on F’; thatAc1 is

containedin F’ for all i, andthat Ag1 is containedin F’
1 for all/. As A sendsan

orthonormalcompleteset in IC on an orthonormalcompleteset in IC, F’ = AF

and theresult follows.

PROPOSiTION2. Let A be an isospectralmap;then there existsa bijective unitary

or antiunitary mapA : IC —* IC suchthat:

AQ =XQX~’

for all selfad,iointoperatorsQ.

Proof Proposition 1 gives the aboveresult for any projector;the generalresult

follows from the spectral decompositionof a selfadjoint operatorand the fact
that A is norm preservinghencecontinuousfor the uniform topology.

3. We translatebelowtheresultof proposition2 in termsof * products.

AssumeA is an isospectralmap and K, (a = 1, 2) are two boundedselfadjoint
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operators,theboundednessassumptioncanbe replacedby suitablerestrictionson

thedomainsof K. Then

(3.1) A(i[K1,K2])=±i[AK1,AK2]

dependingifAis linear(+) or antilinear(—).

Let (M, F) be a symplecticmanifold and let * denotea * product on (M, F),

with an associatedWeyl transform W on N. We assumethat W~(~)is a space
~ of selfadjointoperatorsin a Hilbert spaceIC, andthat F containsthe projectors
in IC; furthermorewe assumethat W~is injectiveon N, for any k in JR. Onehas:

(3.2) W~(u*kv) = W~(u)a W~(v).

In what follows we shall only considersuch * products.

The *~ spectrum of a function u is the support of the Fourier transformof

exp * ~±_u; it is equal to the spectrumof the operatorW~(u)with v = ik.
2v

LEMMA 3. Let T’ (r E IN) be a linear map from N to i~. Tile series T = Id +

r~1 v
2~T~is such that uand Tv havetilesame*

0spectrumnfor allu ENandfor

all v E i IR if and only if 1~is an automorphism or an antiautomorphismof the

deformedbrakedassociatedto *; i.e. if andonly if:

(3.3) ±TO, * v — v * U) = Tu * Tv — T5v * Tu.

Proof Let Ak be themap definedby:

(3.4) W~T~k(u)= Ak W
t”~u ~‘i, EN).

The map Ak is definedon F; its valuesare selfadjoint operators.It is linear and

preservesthe spectrumin the senseof §2. Thus by proposition2, thereexistsa
bijective linearor semihinearmapAk : IC —. IC suchthat:

(3.5) Ak W~”~(u) = AkW°’~(u)A~’ (Vu EN).

From relations(3.1)and(3.2):

Ak(i[W~(u),W~(v)])= ±i[Akh1~~(u),AkW(k)(v)]

= ±i[IV(”)T,k(u), W~”~1~,.,k(v)]

= W~(±i[T,ku *k ~=,kv— TV,kv*k ~~=Iku)

= Ak~ [i(u *kU — v *ku)]

= W~i[T ,k(u *kv —v *ku)].
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Hencethe result (3.3)by injectivity of W~.

LEMMA 4. [7]. If *1 and *2are two * products on (M, F) which are differentiable
(i.e. the cochains Cr which define the * products are bidifferential operators)

andsuchthat:

u*1vv*1u=u*2vv*2u (Vu,vEN)

then thesetwo * productsare equal.

Proof (by induction).Assume

C~(u, v) = C,~(u,v) Vr < 2k.

It is true for r = 0, 1 and for all odd orders.Then

C2k(u, v~= C~k(u,v) + ~E(u, v)

where ~ is the Hochshildcoboundary.As the * productscoincideat order 2k + 1

we have:

~E({u,v},w)+{~E(u,v),w}+{~E(v,w),u}—~E(u,{v,w})=0.

AssumethatE containsa term of maximal orderr> 2.

Il__zr

whereE’~‘

1r is completelysymmetric.Thenif we look at termsof order(r, 1, 1)

in (u, v, w) they appearin:

w) ~v +

+ ~ a~W— a,
1 ,uakvaQwl

Here A
1”~denotethe componentsin a local chartof—F~.The vanishingof the

term in aa u ~v a,,w gives:
1 AaisEtal aj 0r + AajtE~1aj ar =

which impliesimmediately

EtQ2Cr = 0.

HenceE is of order< 2 and then liE = 0 and two * productscoincide.

PROPOSITION3. If two equivalent * products on a symplectic manifold are

isospectral (i.e. yield the same *0 spectrum for all observable and for all v = ik

(k E IR)) then thesetwo * productscoincide.
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Proof If *1 and *2 are equivalent,this equivalencecanbe defined[7] by a series

T = Id + r~i p2rTr The *1 spectrumof u is equal to the *2 spectrumof Tu.

As in lemma 3, T mustbe suchthat u and Tu have the same*2 spectrum.Then
by (3.3)

u *2 v — v *2 u = ±(u *~ v — v *~ u).

The minussign is excludedby the fact that the term of order 1 in any * product

is thePoissonbracket.The conclusionthen follows from lemma4.

4. We haveshown that two equivalent,but distinct, * productsleadto different

spectrafor some observables.We Want to concludeby stressingthe threefollo-

wing points.
a. Let f be an invertible observable(i.e. there existsan observablef~ such

that f*f~ =f
1 *f= 1). The mapu -+f* u *f’ is clearly * spectrumpreserv-

ing; but this map is an automorphismof the * productand thus doesnot lead

to a distinct * product.
b. In the definition of quantizationof a classicalsystem,an ambiguity in the

orderingof operatorsis inherent.A changeof orderingleadsto different spectra
for the observables.We want to stressthe strong analogybetweenthe notion of

mathematicalequivalenceandgeneralizedchangeof ordering.In the caseof 1R2”
and the classicalWeyl transform,a changeof orderingis obtainedby introducing

a weight factor in theWeyl formula; this correspondsto an equivalencegivenby

aseriesof differential operatorswith constantcoefficients. A generalizednotion

of ordering canbe obtainedby consideringweight factorswhich are given by a
seriesof differential operators.

c. It seemsto us, that the choice of a <<good>> * productin agiven equivalence

class as the choice of a <<good ordering>>mustbe relatedto geometryand in parti-
cular to covariance.In the caseof 1R2’~,the Moyal * product which leads to the

correctphysicalresultsis the onewhich hasmaximal covariance.

d. In most physical applicationsone has to deal with a preferredalgebraof
observables,which correspondsto a certain covariancegroup. It woul certainly
be interesting to seeif some of the results provenabove can be generalizedin

this situation and in particular to the algebra generatedby the Hamiltonian
itself.
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